Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 628(8006): 145-153, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538785

RESUMO

As hippocampal neurons respond to diverse types of information1, a subset assembles into microcircuits representing a memory2. Those neurons typically undergo energy-intensive molecular adaptations, occasionally resulting in transient DNA damage3-5. Here we found discrete clusters of excitatory hippocampal CA1 neurons with persistent double-stranded DNA (dsDNA) breaks, nuclear envelope ruptures and perinuclear release of histone and dsDNA fragments hours after learning. Following these early events, some neurons acquired an inflammatory phenotype involving activation of TLR9 signalling and accumulation of centrosomal DNA damage repair complexes6. Neuron-specific knockdown of Tlr9 impaired memory while blunting contextual fear conditioning-induced changes of gene expression in specific clusters of excitatory CA1 neurons. Notably, TLR9 had an essential role in centrosome function, including DNA damage repair, ciliogenesis and build-up of perineuronal nets. We demonstrate a novel cascade of learning-induced molecular events in discrete neuronal clusters undergoing dsDNA damage and TLR9-mediated repair, resulting in their recruitment to memory circuits. With compromised TLR9 function, this fundamental memory mechanism becomes a gateway to genomic instability and cognitive impairments implicated in accelerated senescence, psychiatric disorders and neurodegenerative disorders. Maintaining the integrity of TLR9 inflammatory signalling thus emerges as a promising preventive strategy for neurocognitive deficits.


Assuntos
Região CA1 Hipocampal , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Inflamação , Memória , Receptor Toll-Like 9 , Animais , Feminino , Masculino , Camundongos , Envelhecimento/genética , Envelhecimento/patologia , Região CA1 Hipocampal/fisiologia , Centrossomo/metabolismo , Disfunção Cognitiva/genética , Condicionamento Clássico , Matriz Extracelular/metabolismo , Medo , Instabilidade Genômica/genética , Histonas/metabolismo , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Memória/fisiologia , Transtornos Mentais/genética , Doenças Neurodegenerativas/genética , Doenças Neuroinflamatórias/genética , Neurônios/metabolismo , Neurônios/patologia , Membrana Nuclear/patologia , Receptor Toll-Like 9/deficiência , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/imunologia , Receptor Toll-Like 9/metabolismo
2.
J Vet Med Sci ; 83(2): 180-186, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33281142

RESUMO

Neurotrophic factors have been implicated in the control of neuronal survival and plasticity in different brain diseases. Meningoencephalitis caused by bovine alpha-herpesvirus 5 (BoHV-5) infection is a frequent neurological disease of young cattle, being the involvement of apoptosis in the development of neuropathological changes frequently discussed in the literature. It's well known that Toll-like receptors (TLRs) can activate neuroinflammatory response and consequently lead to neuronal loss. However, there are no studies evaluating the expression of neurotrophic factors and their association with brain pathology and TLRs during the infection by BoHV-5. The current study aimed to analyze brain levels of neurotrophic factors along with neuropathological changes during acute infection by BoHV-5 in wild-type (WT) and TLR3/7/9 (TLR3/7/9-/-) deficiency mice. The infection was induced by intracranial inoculation of 1 × 104 TCID50 of BoHV-5. Infected animals presented similar degrees of clinical signs and neuropathological changes. Both infected groups had meningoencephalitis and neuronal damage in CA regions from hippocampus. BoHV-5 infection promoted the proliferation of Iba-1 positive cells throughout the neuropil, mainly located in the frontal cortex. Moreover, significant lower levels of brain-derived neurotrophic factor (BDNF) were detected in both BoHV-5 infected WT and TLR3/7/9 deficient mice, compared with non-infected animals. Our study showed that BDNF down regulation was associated with brain inflammation, reactive microgliosis and neuronal loss after bovine alpha-herpesvirus 5 infection in mice. Moreover, we demonstrated that combined TLR3/7/9 deficiency does not alter those parameters.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Doenças dos Bovinos/metabolismo , Infecções por Herpesviridae/veterinária , Herpesvirus Bovino 5 , Receptores Toll-Like/deficiência , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Bovinos , Doenças dos Bovinos/virologia , Regulação para Baixo , Infecções por Herpesviridae/metabolismo , Camundongos , Receptor 3 Toll-Like/deficiência , Receptor 7 Toll-Like/deficiência , Receptor Toll-Like 9/deficiência
3.
J Cell Mol Med ; 24(18): 10913-10923, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33140921

RESUMO

Doxorubicin is a commonly used anthracycline chemotherapeutic drug. Its application for treatment has been impeded by its cardiotoxicity as it is detrimental and fatal. DNA damage, cardiac inflammation, oxidative stress and cell death are the critical links in DOX-induced myocardial injury. Previous studies found that TLR9-related signalling pathways are associated with the inflammatory response of cardiac myocytes, mitochondrial dysfunction and cardiomyocyte death, but it remains unclear whether TLR9 could influence DOX-induced heart injury. Our current data imply that DOX-induced cardiotoxicity is ameliorated by TLR9 deficiency both in vivo and in vitro, manifested as improved cardiac function and reduced cardiomyocyte apoptosis and oxidative stress. Furthermore, the deletion of TLR9 rescued DOX-induced abnormal autophagy flux in vivo and in vitro. However, the inhibition of autophagy by 3-MA abolished the protective effects of TLR9 deletion on DOX-induced cardiotoxicity. Moreover, TLR9 ablation suppressed the activation of p38 MAPK during DOX administration and may promote autophagy via the TLR9-p38 MAPK signalling pathway. Our study suggests that the deletion of TLR9 exhibits a protective effect on doxorubicin-induced cardiotoxicity by enhancing p38-dependent autophagy. This finding could be used as a basis for the development of a prospective therapy against DOX-induced cardiotoxicity.


Assuntos
Autofagia/fisiologia , Cardiomiopatias/prevenção & controle , Receptor Toll-Like 9/deficiência , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Apoptose/fisiologia , Autofagia/efeitos dos fármacos , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/patologia , Doxorrubicina/toxicidade , Inflamação , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/patologia , Estresse Oxidativo , Distribuição Aleatória , Espécies Reativas de Oxigênio/metabolismo , Organismos Livres de Patógenos Específicos , Receptor Toll-Like 9/fisiologia
4.
FASEB J ; 34(9): 12083-12099, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32738096

RESUMO

Mice deficient in intestinal epithelial TLR9 develop small intestinal Paneth cell hyperplasia and higher Paneth cell IL-17A levels. Since small intestinal Paneth cells and IL-17A play critical roles in hepatic ischemia reperfusion (IR) injury, we tested whether mice lacking intestinal TLR9 have increased hepatic IR injury. Mice lacking intestinal TLR9 had profoundly increased liver injury after hepatic IR compared to WT mice with exacerbated hepatocyte necrosis, apoptosis, neutrophil infiltration, and inflammatory cytokine generation. Moreover, we observed increased small intestinal inflammation and apoptosis after hepatic IR in intestinal TLR9 deficient mice. As a potential explanation for increased hepatic IR injury, fecal short-chain fatty acids butyrate and propionate levels were lower in intestinal TLR9 deficient mice. Suggesting a potential therapy for hepatic IR, exogenous administration of butyrate or propionate protected against hepatic IR injury in intestinal TLR9 deficient mice. Mechanistically, butyrate induced small intestinal IL-10 expression and downregulated the claudin-2 expression. Finally, IL-10 neutralization abolished the protective effects of butyrate against hepatic IR injury. Our studies show intestinal TLR9 deficiency results in exacerbated hepatic IR injury with increased small intestinal apoptosis and inflammation. Furthermore, short-chain fatty acids butyrate and propionate protect against hepatic IR injury and intestinal apoptosis/inflammation in intestinal TLR9 deficient mice.


Assuntos
Ácidos Graxos/imunologia , Hepatócitos/imunologia , Intestino Delgado/imunologia , Hepatopatias/imunologia , Traumatismo por Reperfusão/imunologia , Receptor Toll-Like 9/deficiência , Animais , Apoptose/genética , Apoptose/imunologia , Ácidos Graxos/genética , Hepatócitos/patologia , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Interleucina-10/genética , Interleucina-10/imunologia , Intestino Delgado/patologia , Hepatopatias/genética , Hepatopatias/patologia , Camundongos , Camundongos Knockout , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Receptor Toll-Like 9/imunologia
5.
Exp Cell Res ; 396(1): 112159, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32652081

RESUMO

Traumatic optic neuropathy is a common clinical problem. Damage to the optic nerve leads to shear stress and triggers secondary swelling within the optic canal. The study aims to explore the role of the inflammatory response following optic nerve injury (ONI) in toll-like receptor-9 knockout mice (TLR-9-/-) compared to wild-type mice (WT). At first, TLR-9-/- and WT mice were subjected to ONI. We then found that ONI significantly up-regulated TLR-9 expression levels in retinal tissues of WT mice. The retinal degeneration after ONI was alleviated in TLR-9-/- mice, as evidenced by the increased number of retinal ganglion cells (RGCs) and thickness of inner retinal layer (IRL). TUNEL staining and immunofluorescence staining of BRN3A indicated that TLR-9 knockout effectively improved the survival of RGCs. ONI-enhanced expression of Iba-1 and TMEM119 was markedly reduced in TLR-9-/- mice, indicating the suppression of microglial activation. Moreover, production of pro-inflammatory regulators, including inducible nitric oxide synthase (iNOS), macrophage chemo-attractant protein (MCP)-1, cyclooxygenase-2 (COX-2), interleukin (IL)-1ß, IL-18 and tumor necrosis factor-α (TNF-α), was significantly decreased in TLR-9-/- mice following ONI. TLR-9 knockout-attenuated inflammation was mainly through repressing myeloid differentiation factor 88 (MyD88) and IL-1 receptor-associated kinase 4 (IRAK4). Furthermore, ONI greatly up-regulated the protein expression levels of phosphorylated (p)-IKKα, p-IκBα and p-nuclear factor (NF)-κB, whereas being repressed in TLR-9-/- mice. The effects of TLR-9 on ONI were verified in lipopolysaccharide (LPS)-stimulated retinal microglial cells transfected with small interfering RNA TLR-9 (siTLR-9). As expected, promoting TLR-9 with its agonist markedly restored inflammation in TLR-9 knockdown cells stimulated by LPS. Therefore, all findings above suggested that suppressing TLR-9 showed neuroprotective effects against ONI through reducing inflammatory response, and TILR-9 might be a promising therapeutic target to develop effective strategies for the treatment of optic neuropathies.


Assuntos
Microglia/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Traumatismos do Nervo Óptico/genética , Nervo Óptico/metabolismo , Células Ganglionares da Retina/metabolismo , Receptor Toll-Like 9/genética , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Contagem de Células , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Regulação da Expressão Gênica , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Inflamação , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Microglia/patologia , Fator 88 de Diferenciação Mieloide/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Nervo Óptico/patologia , Traumatismos do Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/patologia , Células Ganglionares da Retina/patologia , Transdução de Sinais , Receptor Toll-Like 9/deficiência , Fator de Transcrição Brn-3A/genética , Fator de Transcrição Brn-3A/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
6.
J Clin Invest ; 130(6): 3172-3187, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32191633

RESUMO

Toll-like receptor 9 (TLR9) is a regulator of disease pathogenesis in systemic lupus erythematosus (SLE). Why TLR9 represses disease while TLR7 and MyD88 have the opposite effect remains undefined. To begin to address this question, we created 2 alleles to manipulate TLR9 expression, allowing for either selective deletion or overexpression. We used these to test cell type-specific effects of Tlr9 expression on the regulation of SLE pathogenesis. Notably, Tlr9 deficiency in B cells was sufficient to exacerbate nephritis while extinguishing anti-nucleosome antibodies, whereas Tlr9 deficiency in dendritic cells (DCs), plasmacytoid DCs, and neutrophils had no discernable effect on disease. Thus, B cell-specific Tlr9 deficiency unlinked disease from autoantibody production. Critically, B cell-specific Tlr9 overexpression resulted in ameliorated nephritis, opposite of the effect of deleting Tlr9. Our findings highlight the nonredundant role of B cell-expressed TLR9 in regulating lupus and suggest therapeutic potential in modulating and perhaps even enhancing TLR9 signals in B cells.


Assuntos
Formação de Anticorpos , Autoanticorpos/imunologia , Linfócitos B/imunologia , Regulação da Expressão Gênica/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Transdução de Sinais/imunologia , Receptor Toll-Like 9/imunologia , Animais , Autoanticorpos/genética , Linfócitos B/patologia , Células Dendríticas/imunologia , Células Dendríticas/patologia , Modelos Animais de Doenças , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/patologia , Lúpus Eritematoso Sistêmico/prevenção & controle , Camundongos , Camundongos Knockout , Transdução de Sinais/genética , Receptor Toll-Like 9/deficiência
7.
Nature ; 578(7796): 605-609, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32051584

RESUMO

The activation of adenosine monophosphate-activated protein kinase (AMPK) in skeletal muscle coordinates systemic metabolic responses to exercise1. Autophagy-a lysosomal degradation pathway that maintains cellular homeostasis2-is upregulated during exercise, and a core autophagy protein, beclin 1, is required for AMPK activation in skeletal muscle3. Here we describe a role for the innate immune-sensing molecule Toll-like receptor 9 (TLR9)4, and its interaction with beclin 1, in exercise-induced activation of AMPK in skeletal muscle. Mice that lack TLR9 are deficient in both exercise-induced activation of AMPK and plasma membrane localization of the GLUT4 glucose transporter in skeletal muscle, but are not deficient in autophagy. TLR9 binds beclin 1, and this interaction is increased by energy stress (glucose starvation and endurance exercise) and decreased by a BCL2 mutation3,5 that blocks the disruption of BCL2-beclin 1 binding. TLR9 regulates the assembly of the endolysosomal phosphatidylinositol 3-kinase complex (PI3KC3-C2)-which contains beclin 1 and UVRAG-in skeletal muscle during exercise, and knockout of beclin 1 or UVRAG inhibits the cellular AMPK activation induced by glucose starvation. Moreover, TLR9 functions in a muscle-autonomous fashion in ex vivo contraction-induced AMPK activation, glucose uptake and beclin 1-UVRAG complex assembly. These findings reveal a heretofore undescribed role for a Toll-like receptor in skeletal-muscle AMPK activation and glucose metabolism during exercise, as well as unexpected crosstalk between this innate immune sensor and autophagy proteins.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Beclina-1/metabolismo , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Receptor Toll-Like 9/metabolismo , Animais , Autofagia , Ativação Enzimática , Exercício Físico , Glucose/metabolismo , Humanos , Masculino , Camundongos , Modelos Animais , Músculo Esquelético/enzimologia , Fosfatidilinositol 3-Quinase/metabolismo , Receptor Toll-Like 9/deficiência , Receptor Toll-Like 9/genética , Proteínas Supressoras de Tumor/metabolismo
8.
Cell Death Dis ; 11(2): 96, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029708

RESUMO

Cathelicidin-related antimicrobial peptide (CRAMP), an antimicrobial peptide, was reported to protect against myocardial ischemia/reperfusion injury. However, the effect of CRAMP on pressure overload-induced cardiac hypertrophy was unknown. This study explored the role of CRAMP on cardiac hypertrophy. A cardiac hypertrophy mouse model was induced by aortic banding surgery. Seven days after surgery, mice were given mCRAMP by intraperitoneal injection (8 mg/kg/d) for 7 weeks. Cardiac hypertrophy was evaluated by the hypertrophic response and fibrosis level as well as cardiac function. Mice were also injected with AAV9-shCRAMP to knockdown CRAMP in the mouse heart. CRAMP levels first increased and then reduced in the remodeling heart, as well as in angiotensin II-stimulated endothelial cells but not in cardiomyocytes and fibroblasts. mCRAMP protected against the pressure overload-induced cardiac remodeling process, while CRAMP knockdown accelerated this process. mCRAMP reduced the inflammatory response and oxidative stress in the hypertrophic heart, while mCRAMP deficiency deteriorated the pressure overload-induced inflammatory response and oxidative stress. mCRAMP inhibited the angiotensin II-stimulated hypertrophic response and oxidative stress in neonatal rat cardiomyocytes, but mCRAMP did not help the angiotensin II-induced inflammatory response and oxidative stress in endothelial cells. Mechanistically, we found that mCRAMP suppressed the cardiac hypertrophic response by activating the IGFR1/PI3K/AKT pathway via directly binding to IGFR1. AKT knockout mice completely reversed the anti-hypertrophic effect of mCRAMP but not its anti-oxidative effect. We also found that mCRAMP ameliorated cardiac oxidative stress by activating the TLR9/AMPKa pathway. This was confirmed by a TLR9 knockout mouse experiment, in which a TLR9 knockout partly reversed the anti-hypertrophic effect of mCRAMP and completely counteracted the anti-oxidative effect of mCRAMP. In summary, mCRAMP protected against pressure overload-induced cardiac hypertrophy by activating both the IGFR1/PI3K/AKT and TLR9/AMPKa pathways in cardiomyocytes.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Hipertrofia Ventricular Esquerda/prevenção & controle , Miocárdio/enzimologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Antioxidantes/farmacologia , Modelos Animais de Doenças , Hipertrofia Ventricular Esquerda/enzimologia , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/patologia , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/deficiência , Proteínas Proto-Oncogênicas c-akt/genética , Interferência de RNA , Transdução de Sinais , Receptor Toll-Like 9/deficiência , Receptor Toll-Like 9/genética , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Catelicidinas
9.
Am J Respir Cell Mol Biol ; 62(3): 364-372, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31647878

RESUMO

The immune system is designed to robustly respond to pathogenic stimuli but to be tolerant to endogenous ligands to not trigger autoimmunity. Here, we studied an endogenous damage-associated molecular pattern, mitochondrial DNA (mtDNA), during primary graft dysfunction (PGD) after lung transplantation. We hypothesized that cell-free mtDNA released during lung ischemia-reperfusion triggers neutrophil extracellular trap (NET) formation via TLR9 signaling. We found that mtDNA increases in the BAL fluid of experimental PGD (prolonged cold ischemia followed by orthotopic lung transplantation) and not in control transplants with minimal warm ischemia. The adoptive transfer of mtDNA into the minimal warm ischemia graft immediately before lung anastomosis induces NET formation and lung injury. TLR9 deficiency in neutrophils prevents mtDNA-induced NETs, and TLR9 deficiency in either the lung donor or recipient decreases NET formation and lung injury in the PGD model. Compared with human lung transplant recipients without PGD, severe PGD was associated with high levels of BAL mtDNA and NETs, with evidence of relative deficiency in DNaseI. We conclude that mtDNA released during lung ischemia-reperfusion triggers TLR9-dependent NET formation and drives lung injury. In PGD, DNaseI therapy has a potential dual benefit of neutralizing a major NET trigger (mtDNA) in addition to dismantling pathogenic NETs.


Assuntos
Isquemia Fria/efeitos adversos , DNA Mitocondrial/farmacologia , Armadilhas Extracelulares/metabolismo , Neutrófilos/efeitos dos fármacos , Disfunção Primária do Enxerto/imunologia , Receptor Toll-Like 9/fisiologia , Lesão Pulmonar Aguda/etiologia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Citrulinação , DNA Mitocondrial/administração & dosagem , Desoxirribonuclease I/metabolismo , Humanos , Transplante de Pulmão , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Disfunção Primária do Enxerto/metabolismo , Proteína-Arginina Desiminase do Tipo 4/deficiência , Proteína-Arginina Desiminase do Tipo 4/fisiologia , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo , Organismos Livres de Patógenos Específicos , Receptor Toll-Like 9/deficiência , Isquemia Quente/efeitos adversos
10.
J Cell Mol Med ; 22(9): 4399-4409, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29992753

RESUMO

Endogenous nucleic acids and their receptors may be involved in the initiation of systemic autoimmune diseases including rheumatoid arthritis (RA). As the role of the DNA sensing Toll-like receptor (TLR) 9 in RA is unclear, we aimed to investigate its involvement in the pathogenesis of autoimmune arthritis using three different experimental models of RA. The data obtained revealed involvement of TLR9 in the T cell-dependent phase of inflammatory arthritis. In rats with pristane-induced arthritis (PIA), TLR9 inhibition before disease onset reduced arthritis significantly and almost completely abolished bone erosion. Accordingly, serum levels of IL-6, α-1-acid-glycoprotein and rheumatoid factor were reduced. Moreover, in TLR9-/- mice, streptococcal cell wall (SCW)-induced arthritis was reduced in the T cell-dependent phase, whereas T cell-independent serum-transfer arthritis was not affected. Remarkably, while TLR7 expression did not change during in vitro osteoclastogenesis, TLR9 expression was higher in precursor cells than in mature osteoclasts and partial inhibition of osteoclastogenesis was achieved only by the TLR9 antagonist. These results demonstrate a pivotal role for TLR9 in the T cell-dependent phases of inflammatory arthritis and additionally suggest some role during osteoclastogenesis. Hence, endogenous DNA seems to be crucially involved in the pathophysiology of inflammatory autoimmune arthritis.


Assuntos
Artrite Experimental/genética , Articulações/imunologia , Osteoclastos/imunologia , Osteogênese/genética , Receptor Toll-Like 9/genética , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/imunologia , Artrite Experimental/patologia , Cartilagem Articular/imunologia , Cartilagem Articular/patologia , Parede Celular/química , Misturas Complexas/administração & dosagem , Regulação da Expressão Gênica , Interleucina-6/genética , Interleucina-6/imunologia , Articulações/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Orosomucoide/genética , Orosomucoide/imunologia , Osteoclastos/patologia , Ratos , Fator Reumatoide/genética , Fator Reumatoide/imunologia , Transdução de Sinais , Streptococcus pyogenes/química , Terpenos/administração & dosagem , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/imunologia , Receptor Toll-Like 9/deficiência , Receptor Toll-Like 9/imunologia
11.
J Clin Invest ; 128(7): 2966-2978, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29889098

RESUMO

Toll-like receptors TLR7 and TLR9 are both implicated in the activation of autoreactive B cells and other cell types associated with systemic lupus erythematosus (SLE) pathogenesis. However, Tlr9-/- autoimmune-prone strains paradoxically develop more severe disease. We have now leveraged the negative regulatory role of TLR9 to develop an inducible rapid-onset murine model of systemic autoimmunity that depends on T cell detection of a membrane-bound OVA fusion protein expressed by MHC class II+ cells, expression of TLR7, expression of the type I IFN receptor, and loss of expression of TLR9. These mice are distinguished by a high frequency of OVA-specific Tbet+, IFN-γ+, and FasL-expressing Th1 cells as well as autoantibody-producing B cells. Unexpectedly, contrary to what occurs in most models of SLE, they also developed skin lesions that are very similar to those of human cutaneous lupus erythematosus (CLE) as far as clinical appearance, histological changes, and gene expression. FasL was a key effector mechanism in the skin, as the transfer of FasL-deficient DO11gld T cells completely failed to elicit overt skin lesions. FasL was also upregulated in human CLE biopsies. Overall, our model provides a relevant system for exploring the pathophysiology of CLE as well as the negative regulatory role of TLR9.


Assuntos
Proteína Ligante Fas/metabolismo , Lúpus Eritematoso Cutâneo/imunologia , Glicoproteínas de Membrana/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/deficiência , Animais , Autoanticorpos/biossíntese , Linfócitos B/imunologia , Linfócitos B/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Interferon Tipo I/metabolismo , Lúpus Eritematoso Cutâneo/metabolismo , Lúpus Eritematoso Cutâneo/patologia , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Ovalbumina/imunologia , Pele/imunologia , Pele/patologia , Células Th1/imunologia , Células Th1/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
12.
Arthritis Rheumatol ; 70(10): 1597-1609, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29687651

RESUMO

OBJECTIVE: Toll-like receptors (TLRs) 7 and 9 are important innate signaling molecules with opposing roles in the development and progression of systemic lupus erythematosus (SLE). While multiple studies support the notion of a dependency on TLR-7 for disease development, genetic ablation of TLR-9 results in severe disease with glomerulonephritis (GN) by a largely unknown mechanism. This study was undertaken to examine the suppressive role of TLR-9 in the development of severe lupus in a mouse model. METHODS: We crossed Sle1 lupus-prone mice with TLR-9-deficient mice to generate Sle1TLR-9-/- mice. Mice ages 4.5-6.5 months were evaluated for severe autoimmunity by assessing splenomegaly, GN, immune cell populations, autoantibody and total Ig profiles, kidney dendritic cell (DC) function, and TLR-7 protein expression. Mice ages 8-10 weeks were used for functional B cell studies, Ig profiling, and determination of TLR-7 expression. RESULTS: Sle1TLR-9-/- mice developed severe disease similar to TLR-9-deficient MRL and Nba2 models. Sle1TLR-9-/- mouse B cells produced more class-switched antibodies, and the autoantibody repertoire was skewed toward RNA-containing antigens. GN in these mice was associated with DC infiltration, and purified Sle1TLR-9-/- mouse renal DCs were more efficient at TLR-7-dependent antigen presentation and expressed higher levels of TLR-7 protein. Importantly, this increase in TLR-7 expression occurred prior to disease development, indicating a role in the initiation stages of tissue destruction. CONCLUSION: The increase in TLR-7-reactive immune complexes, and the concomitant enhanced expression of their receptor, promotes inflammation and disease in Sle1TLR9-/- mice.


Assuntos
Lúpus Eritematoso Sistêmico/imunologia , Nefrite Lúpica/imunologia , Receptor 7 Toll-Like/imunologia , Receptor Toll-Like 9/deficiência , Regulação para Cima/imunologia , Animais , Antígenos/imunologia , Modelos Animais de Doenças , Camundongos , RNA/imunologia , Receptor Toll-Like 9/imunologia
13.
Nat Commun ; 8(1): 1282, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-29101363

RESUMO

Infectious pathogens contribute to the development of autoimmune disorders, but the mechanisms connecting these processes are incompletely understood. Here we show that Plasmodium DNA induces autoreactive responses against erythrocytes by activating a population of B cells expressing CD11c and the transcription factor T-bet, which become major producers of autoantibodies that promote malarial anaemia. Additionally, we identify parasite DNA-sensing through Toll-like receptor 9 (TLR9) along with inflammatory cytokine receptor IFN-γ receptor (IFN-γR) as essential signals that synergize to promote the development and appearance of these autoreactive T-bet+ B cells. The lack of any of these signals ameliorates malarial anaemia during infection in a mouse model. We also identify both expansion of T-bet+ B cells and production of anti-erythrocyte antibodies in ex vivo cultures of naive human peripheral blood mononuclear cells (PBMC) exposed to P. falciprum infected erythrocyte lysates. We propose that synergistic TLR9/IFN-γR activation of T-bet+ B cells is a mechanism underlying infection-induced autoimmune-like responses.


Assuntos
Anemia Hemolítica Autoimune/etiologia , Anemia Hemolítica Autoimune/imunologia , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/parasitologia , DNA de Protozoário/imunologia , Malária Falciparum/complicações , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Receptor Toll-Like 9/metabolismo , Anemia Hemolítica Autoimune/parasitologia , Animais , Autoanticorpos/biossíntese , Eritrócitos/imunologia , Eritrócitos/parasitologia , Feminino , Humanos , Ativação Linfocitária , Malária Falciparum/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasmodium falciparum/patogenicidade , Receptores de Interferon/deficiência , Receptores de Interferon/genética , Receptores de Interferon/metabolismo , Proteínas com Domínio T/deficiência , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Receptor Toll-Like 9/deficiência , Receptor Toll-Like 9/genética
14.
J Immunol ; 199(12): 4001-4015, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29118245

RESUMO

Mer tyrosine kinase (Mer) signaling maintains immune tolerance by clearing apoptotic cells (ACs) and inducing immunoregulatory signals. We previously showed that Mer-deficient mice (Mer-/-) have increased germinal center (GC) responses, T cell activation, and AC accumulation within GCs. Accumulated ACs in GCs can undergo necrosis and release self-ligands, which may influence the outcome of a GC response and selection. In this study, we generated Mer-/- mice with a global MyD88, TLR7, or TLR9 deficiency and cell type-specific MyD88 deficiency to study the functional correlation between Mer and TLRs in the development of GC responses and autoimmunity. We found that GC B cell-intrinsic sensing of self-RNA, but not self-DNA, released from dead cells accumulated in GCs drives enhanced GC responses in Mer-/- mice. Although self-ligands directly affect GC B cell responses, the loss of Mer in dendritic cells promotes enhanced T cell activation and proinflammatory cytokine production. To study the impact of Mer deficiency on the development of autoimmunity, we generated autoimmune-prone B6.Sle1b mice deficient in Mer (Sle1bMer-/-). We observed accelerated autoimmunity development even under conditions where Sle1bMer-/- mice did not exhibit increased AC accumulation in GCs compared with B6.Sle1b mice, indicating that Mer immunoregulatory signaling in APCs regulates B cell selection and autoimmunity. We further found significant expansion, retention, and class-switching of autoreactive B cells in GCs under conditions where ACs accumulated in GCs of Sle1bMer-/- mice. Altogether, both the phagocytic and immunomodulatory functions of Mer regulate GC responses to prevent the development of autoimmunity.


Assuntos
Autoimunidade/imunologia , Centro Germinativo/imunologia , Tolerância a Antígenos Próprios/fisiologia , c-Mer Tirosina Quinase/fisiologia , Animais , Apresentação de Antígeno , Apoptose , Subpopulações de Linfócitos B/imunologia , Feminino , Imunização , Switching de Imunoglobulina , Rim/patologia , Masculino , Glicoproteínas de Membrana/deficiência , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/imunologia , RNA/imunologia , Organismos Livres de Patógenos Específicos , Receptor 7 Toll-Like/deficiência , Receptor Toll-Like 9/deficiência , c-Mer Tirosina Quinase/deficiência , c-Mer Tirosina Quinase/genética
15.
Clin Sci (Lond) ; 131(16): 2145-2159, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28687713

RESUMO

Background and aims: TLR9 deletion protects against steatohepatitis due to choline-amino acid depletion and high-fat diet. We measured TLR9 in human non-alcoholic steatohepatitis (NASH) livers, and tested whether TLR9 mediates inflammatory recruitment in three murine models of non-alcoholic fatty liver disease (NAFLD). Methods: We assayed TLR mRNA in liver biopsies from bariatric surgery patients. Wild-type (Wt), appetite-dysregulated Alms1 mutant (foz/foz), Tlr9-/-, and Tlr9-/-foz/foz C57BL6/J mice and bone marrow (BM) chimeras were fed 0.2% cholesterol, high-fat, high sucrose (atherogenic[Ath]) diet or chow, and NAFLD activity score (NAS)/NASH pathology, macrophage/neutrophil infiltration, cytokines/chemokines, and cell death markers measured in livers. Results: Hepatic TLR9 and TLR4 mRNA were increased in human NASH but not simple steatosis, and in Ath-fed foz/foz mice with metabolic syndrome-related NASH. Ath-fed Tlr9-/- mice showed simple steatosis and less Th1 cytokines than Wt. Tlr9-/-foz/foz mice were obese and diabetic, but necroinflammatory changes were less severe than Tlr9+/+.foz/foz mice. TLR9-expressing myeloid cells were critical for Th1 cytokine production in BM chimeras. BM macrophages from Tlr9-/- mice showed M2 polarization, were resistant to M1 activation by necrotic hepatocytes/other pro-inflammatory triggers, and provoked less neutrophil chemotaxis than Wt Livers from Ath-fed Tlr9-/- mice appeared to exhibit more markers of necroptosis [receptor interacting protein kinase (RIP)-1, RIP-3, and mixed lineage kinase domain-like protein (MLKL)] than Wt, and ∼25% showed portal foci of mononuclear cells unrelated to NASH pathology. CONCLUSION: Our novel clinical data and studies in overnutrition models, including those with diabetes and metabolic syndrome, clarify TLR9 as a pro-inflammatory trigger in NASH. This response is mediated via M1-macrophages and neutrophil chemotaxis.


Assuntos
Mediadores da Inflamação/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptor Toll-Like 9/biossíntese , Regulação para Cima/fisiologia , Adiponectina/deficiência , Adulto , Animais , Cirurgia Bariátrica , Biópsia , Células Cultivadas , Citocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Deleção de Genes , Hepatócitos/metabolismo , Hepatomegalia/prevenção & controle , Humanos , Fígado/metabolismo , Fígado/patologia , Macrófagos/metabolismo , Síndrome Metabólica/metabolismo , Erros Inatos do Metabolismo/prevenção & controle , Camundongos Knockout , Neutrófilos/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/prevenção & controle , RNA Mensageiro/genética , Receptor Toll-Like 9/deficiência , Receptor Toll-Like 9/genética
16.
J Immunol ; 199(2): 489-500, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28592426

RESUMO

Idiotypes (Ids) are unique epitopes of Ab V regions and can trigger anti-Id immune responses, but immunization with several nonadjuvanted isologous IgG mAbs has induced tolerance to their Ids. We immunized non-lupus-prone mice with 11 allotype "a" of IgG2a (IgG2aa) and 4 IgG2c nonadjuvanted, isologous mAbs purified from serum-free medium. Of five IgG2aa mAbs with specificity for nucleosomes, the repeating histone-DNA subunit of chromatin, four elicited an IgG1 anti-mAb response and one mAb was nonimmunogenic. In contrast, none of six IgG2aa mAbs with unknown specificity triggered anti-mAb responses. The data suggested a link between immunogenicity and specificity for nucleosomes. One anti-nucleosome IgG2aa mAb, termed 3F7.A10, copurified with self-histones and was a potent immunogen for BALB/c mice. The response against IgG2aa 3F7.A10 was CD4+ Th cell-dependent, dominated by the IgG1 subclass, and Id specific. Ultracentrifugation converted the purified 3F7.A10 mAb into a weak immunogen, suggesting that the mAb had formed immunogenicity-enhancing immune complexes (ICs) with nucleosomal Ags during cell culture. BALB/c mice injected with viable MHC-incompatible 3F7.A10 hybridoma cells grown in serum-free medium mounted strong anti-Id responses. TLR9-deficient mice responded significantly weaker to Id-3F7.A10 than did TLR9-sufficient mice, suggesting that the cognate BCR efficiently internalizes the Id in an IC with nucleosomes. Passive transfer of IgG2aa 3F7.A10 to BALB/c mice with high titers of IgG1 anti-3F7.A10 led to glomerular deposits of IgG1/IgG2a complexes. The immunogenicity of Id-3F7.A10 raises the possibility that diverse Ids of nucleosome-specific Abs form ICs with nucleosomes released from dying cells and elicit spontaneous formation of anti-Id Abs in vivo.


Assuntos
Anticorpos Anti-Idiotípicos/imunologia , Anticorpos Monoclonais/imunologia , Complexo Antígeno-Anticorpo , Imunoglobulina G/imunologia , Glomérulos Renais/imunologia , Nucleossomos/imunologia , Animais , Anticorpos Monoclonais/administração & dosagem , Linfócitos T CD4-Positivos/imunologia , Meios de Cultura Livres de Soro , Hibridomas/imunologia , Imunização , Imunização Passiva , Idiótipos de Imunoglobulinas/imunologia , Glomérulos Renais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Células Th1/imunologia , Receptor Toll-Like 9/deficiência , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/imunologia
17.
J Immunol ; 199(2): 761-773, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28576980

RESUMO

TLRs are key sensors for conserved bacterial molecules and play a critical role in host defense against invading pathogens. Although the roles of TLRs in defense against pathogen infection and in maintaining gut immune homeostasis have been studied, the precise functions of different TLRs in response to pathogen infection in the gut remain elusive. The present study investigated the role of TLR signaling in defense against the Gram-negative bacterial pathogen Salmonella typhimurium The results indicated that TLR9-deficient mice were more susceptible to S. typhimurium infection compared with wild-type and TLR2- or TLR4-deficient mice, as indicated by more severe intestinal damage and the highest bacterial load. TLR9 deficiency in intestinal epithelial cells (IECs) augmented the activation of NF-κB and NLRP3 inflammasomes significantly, resulting in increased secretion of IL-1ß. IL-1ß increased the expression of NKG2D on intestinal intraepithelial lymphocytes and NKG2D ligands on IECs, resulting in higher susceptibility of IECs to cytotoxicity of intestinal intraepithelial lymphocytes and damage to the epithelial barrier. We proposed that TLR9 regulates the NF-κB-NLRP3-IL-1ß pathway negatively in Salmonella-induced NKG2D-mediated intestinal inflammation and plays a critical role in defense against S. typhimurium infection and in the protection of intestinal integrity.


Assuntos
Gastroenterite/imunologia , Interleucina-1beta/metabolismo , Intestinos/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Salmonelose Animal/imunologia , Salmonella typhimurium/imunologia , Receptor Toll-Like 9/metabolismo , Animais , Células Epiteliais/imunologia , Gastroenterite/microbiologia , Regulação da Expressão Gênica , Inflamassomos/metabolismo , Inflamação , Interleucina-1beta/imunologia , Intestinos/citologia , Intestinos/patologia , Camundongos , NF-kappa B/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Espécies Reativas de Oxigênio/metabolismo , Salmonelose Animal/microbiologia , Transdução de Sinais , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/imunologia , Receptor 3 Toll-Like/deficiência , Receptor 3 Toll-Like/imunologia , Receptor Toll-Like 9/deficiência , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/imunologia
18.
J Hepatol ; 67(4): 780-790, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28554874

RESUMO

BACKGROUND & AIMS: Although obesity is a risk factor for acute liver failure, the pathogenic mechanisms are not yet fully understood. High cholesterol (HC) intake, which often underlies obesity, is suggested to play a role in the mechanism. We aimed to elucidate the effect of a HC diet on acetaminophen-induced acute liver injury, the most frequent cause of acute liver failure in the USA. METHODS: C57BL/6 Toll-like receptor 9 (TLR9) knockout (Tlr9-/-) mice and their Tlr9+/+ littermates were fed an HC diet for fourweeks and then treated with acetaminophen. Liver sinusoidal endothelial cells (LSECs) were isolated from the mice for in vivo and in vitro analyses. RESULTS: The HC diet exacerbated acetaminophen-induced acute liver injury in a TLR9/inflammasome pathway-dependent manner. LSECs played a major role in the cholesterol loading-induced exacerbation. The accumulation of free cholesterol in the endolysosomes in LSECs enhanced TLR9-mediated signaling, thereby exacerbating the pathology of acetaminophen-induced liver injury through the activation of the TLR9/inflammasome pathway. The accumulation of free cholesterol in LSEC endolysosomes induced a dysfunction of the Rab7 membrane trafficking recycling mechanism, thus disrupting the transport of TLR9 from late endosomes to the lysosomes. Consequently, the level of active TLR9 in the late endosomes increased, thereby enhancing TLR9 signaling in LSECs. CONCLUSIONS: HC intake exaggerated acetaminophen-induced acute liver injury via free cholesterol accumulation in LSECs, demonstrating a novel role of free cholesterol as a metabolic factor in TLR9 signal regulation and pathologies of acetaminophen-induced liver injury. Therapeutic approaches may target this pathway. Lay summary: High cholesterol intake exacerbated acetaminophen-induced acute liver injury via the accumulation of free cholesterol in the endolysosomes of liver sinusoidal endothelial cells. This accumulation enhanced Toll-like receptor 9 signaling via impairment of its membrane trafficking mechanism. Thus, free cholesterol accumulation, as an underlying metabolic factor, exacerbated the pathology of acetaminophen-induced liver injury through activation of the TLR9/inflammasome pathway.


Assuntos
Acetaminofen/toxicidade , Colesterol/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligodesoxirribonucleotídeos/farmacologia , Transporte Proteico , Transdução de Sinais , Receptor Toll-Like 9/deficiência , Receptor Toll-Like 9/genética , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
19.
PLoS One ; 12(3): e0173471, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28278279

RESUMO

Genetic deficiency in TLR9 accelerates pathogenesis in the spontaneous polygenic MRL.Faslpr murine model of systemic lupus erythematosus, despite the absence of anti-nucleosome autoantibodies. However, it could be argued that this result was dependent on Fas-deficiency rather than lupus-promoting genes in the MRL genetic background. Here we report the effects of TLR9 deficiency on autoimmune disease independent of the lpr mutation in Fas by characterizing Tlr9-/- and Tlr9+/+ mice on the Fas-intact MRL/+ genetic background. By 30 weeks of age, Tlr9-deficient MRL/+ had more severe renal disease, increased T cell activation, and higher titers of anti-Sm and anti-RNA autoantibodies than Tlr9-intact animals, as had been the case in the MRL.Faslpr model. In addition, Tlr9-deficient MRL/+ mice had increased numbers of germinal center phenotype B cells and an increase in splenic neutrophils and conventional dendritic cell populations. Thus, the disease accelerating effects of Tlr9 deficiency are separable from those mediated by the Fas mutation in the lupus-prone MRL genetic background. Nonetheless, disease acceleration in Tlr9-deficient MRL/+ mice was phenotypically distinct from that in Fas-deficient counterparts, which has important implications.


Assuntos
Lúpus Eritematoso Sistêmico/metabolismo , Receptor Toll-Like 9/metabolismo , Receptor fas/metabolismo , Animais , Autoanticorpos/biossíntese , Feminino , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Camundongos , Camundongos Endogâmicos MRL lpr , Mutação , Receptor Toll-Like 9/deficiência
20.
Virol J ; 14(1): 37, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28222752

RESUMO

BACKGROUND: Herpes simplex virus type 1 (HSV-1) cause not only mild symptoms but also blindness and encephalitis. It was previously shown that the immune response against HSV-1 occurs mainly in the trigeminal ganglia (TG) and that Toll-like receptors 2 and 9 (TLR2/9) are important in mediating this response. It was also demonstrated that iNOS (nitric oxide synthase) and interleukin 1 beta (IL-1ß) play an essential role in the defense against HSV-1 infection. Importantly, the present work aimed to identify the primary cells responsible for iNOS and IL-1ß production and search for other important molecules and cells that might or might not depend on TLR2/9 receptors to mediate the immune response against HSV-1. METHODS: C57BL/6 (wild type, WT) and TLR2/9-/- mice were infected by the intranasal route with HSV-1 (1 × 106 p.f.u.). Cells were obtained from the TG and spleen tissues and the profile of immune cells was determined by flow cytometry in infected and mock infected WT and knockout mice. The percentage of cells producing iNOS, IL-1ß, granzyme B and perforin was also determined by flow cytometry. Chemokine monocyte chemoattractant protein-1 (MCP1) was measured by Cytometric Bead Array (CBA) in the TG, spleen and lung. Expression of type I interferons (IFNs), interleukins (IL) 5 and 10, IL-1ß and granzyme B were quantified by real time PCR. RESULTS: The results indicate that dendritic cells (DCs) and monocytes/macrophages (Mo/Mϕ) were the main sources of IL-1ß and iNOS, respectively, which, together with type I IFNs, were essential for the immune response against HSV-1. Additionally, we showed that granzyme B produced by CD8+ T and NK lymphocytes and MCP-1 were also important for this immune response. Moreover, our data indicate that the robust production of MCP-1 and granzyme B is either TLR-independent or down regulated by TLRs and occurs in the TG of TLR2/9-/- infected mice. CONCLUSION: Taken together, our data provide strong evidence that the responses mediated by DCs, Mo/Mϕ, NK and CD8+ T lymphocytes through IL-1ß, iNOS and granzyme B production, respectively, together with the production of type I IFN early in the infection, are crucial to host defense against HSV-1.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Herpesvirus Humano 1/imunologia , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Gânglio Trigeminal/imunologia , Gânglio Trigeminal/virologia , Animais , Citometria de Fluxo , Granzimas/metabolismo , Humanos , Interferon Tipo I/metabolismo , Interleucina-1beta/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/metabolismo , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/metabolismo , Receptor Toll-Like 9/deficiência , Receptor Toll-Like 9/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...